\qquad Period \qquad Date \qquad

Intermediate II Chapter 6 Review

6.1 (Translations)

Remember: Translations are just SLIDING the image around the coordinate plane Pre-image: original image (A, B, C)
Image: new image AFTER transformation of any kind ($A^{\prime}, B^{\prime}, C^{\prime}$)
IF you're moving LEFT OR RIGHT, this affects your X-COORDINATE.
IF you're moving UP OR DOWN, this affects your Y-COORDINATE.
TRANSLATION NOTATION: (change in all x-coordinates, change in all y-coordinates)
Example: Shift the pre-image left 3 and up 4: $(x-3, y+4)$

Sample Problems:

Write the following transformations in translation notation.

1. Shift 3 down and 4 to the right.
2. Shift 2 up and 6 to the left
3. Shift 4 down and

5 to the right.
4. $A(3,-4) \rightarrow A^{\prime}(5,0)$
5. $B(-4,-2) \rightarrow B^{\prime}(-6,2)$

6. Translation notation from point D to point A :
7. Translation notation from point A to point B :
8. Translation notation from point C to point A :
9. Graph triangle $\mathrm{A}(-4,0), \mathrm{B}(-4,3)$, and $\mathrm{C}(-1,0)$ and its image after a translation of $(x+2, y-4)$.

10. Give the vertices of $W(-1,-3), X(-1,2), Y(2,-3), Z(2,2)$ after a translation of 5 units up and 3 units to the right.

6.2 Reflections

REFLECTION: a mirror image that is CONGRUENT to the pre-image Two lines of symmetry (this year ©):

Reflection over the X-AXIS: x-coordinate stays the same; y-coordinate changes signs (same, -) Reflection over the Y-AXIS: x-coordinate changes signs; y-coordinate stays the same (- , same)

Sample Problems:

1. Graph the following triangle on both coordinate planes below. Triangle ABC has coordinates $A(2,3) B(3,1)$ and $C(4,3)$.

New coordinates:

New coordinates:
2. Graph the following triangle on both coordinate planes below.

Triangle DEF has coordinates $A(-2,-3) B(-3,0)$ and $C(2,5)$.

Graph triangle DEF's reflection over the x-axis.
Write the new coordinates.

New coordinates:
Graph triangle DEF's reflection over the y-axis.
Write the new coordinates.

New coordinates:

6.3 Rotations

Rotations are clockwise (to the \quad right) or counter-clockwise (to the left)

Degrees we use (this year \odot) are $90^{\circ}, 180^{\circ}$, and 270°

${ }^{*} 90^{\circ}$ clockwise is \qquad counterclockwise,
180° clockwise is \qquad counterclockwise, 270° clockwise is \qquad counterclockwise

There are two kinds of rotations:

* Rotation about the origin
* Rotation about a fixed point (not the origin)

6.4 Dilations

Multiply each x value and each y value by the scale factor (k)
$k>1$, then the dilation is an enlargement (get's bigger)
$k<1$, then the dilation is a reduction (get's smaller)
$k=1$, then the figure stays the same size
Sample Problems:
$F(-2,1), U(-1,2), N(3,1) ; k=2$

$P(-3,3), Q(6,3), R(6,-3), S(-3,-3) ; k=\frac{1}{3}$

David built a model of a regulation basketball court. His model measured approximately 3.75 feet long by 2 feet wide. The dimensions of a regulation court are 94 feet long by 50 feet wide. What is the scale factor David used to build his model?

Review of Solving Equations

$-3 x-4=4 x+10$
$2(m+3)-5=5+2 m$
$5(z+1)+14=19-2 z+7 z$

